Microglia and Memory

Morphological intricacy of neurons and glia in a mouse hippocampal organotypic slice. Credit to Dr. Chris Henstridge.

Nobel laureate Mario Cappecchi was the first to show a neuro-immune connection in psychiatric diseases. In this provocative and very interesting study Williamson and colleagues make a link between immunity and memory. They report that neonatal bacterial infection can have long-lasting negative effects on learning and memory later in adult life. Here is the abstract of the study published in October in the Journal of Neuroscience.

The proinflammatory cytokine interleukin-1β (IL-1β) is critical for normal hippocampus (HP)-dependent cognition, whereas high levels can disrupt memory and are implicated in neurodegeneration. However, the cellular source of IL-1β during learning has not been shown, and little is known about the risk factors leading to cytokine dysregulation within the HP. We have reported that neonatal bacterial infection in rats leads to marked HP-dependent memory deficits in adulthood. However, deficits are only observed if unmasked by a subsequent immune challenge [lipopolysaccharide (LPS)] around the time of learning. These data implicate a long-term change within the immune system that, upon activation with the “second hit,” LPS, acutely impacts the neural processes underlying memory. Indeed, inhibiting brain IL-1β before the LPS challenge prevents memory impairment in neonatally infected (NI) rats. We aimed to determine the cellular source of IL-1β during normal learning and thereby lend insight into the mechanism by which this cytokine is enduringly altered by early-life infection. We show for the first time that CD11b+ enriched cells are the source of IL-1β during normal HP-dependent learning. CD11b+ cells from NI rats are functionally sensitized within the adult HP and produce exaggerated IL-1β ex vivo compared with controls. However, an exaggerated IL-1β response in vivo requires LPS before learning. Moreover, preventing microglial activation during learning prevents memory impairment in NI rats, even following an LPS challenge. Thus, early-life events can significantly modulate normal learning-dependent cytokine activity within the HP, via a specific, enduring impact on brain microglial function.

Read the full study here